常用函数的导数和导数公式

常用函数求导

原函数 导函数
C 0
x^n nx^{n-1}
\sin x \cos x
\cos x -\sin x
\tan x \displaystyle\frac{1}{\cos^2 x}=sec^2 x
\cot x -\displaystyle\frac{1}{\sin^2 x}=-csc^2 x
n^x n^x\ln n
\displaystyle\frac{1}{x} -\displaystyle\frac{1}{x^2}
\displaystyle\frac{1}{x^{n}} -\displaystyle\frac{n}{x^{n+1}}
\log_{a} x \displaystyle\frac{1}{x \ln a}
e^{x} e^{x}
\arcsin x \displaystyle\frac{1}{\sqrt{1-x^{2}}}
\arccos x -\displaystyle\frac{1}{\sqrt{1-x^{2}}}
\arctan x \displaystyle\frac{1}{1+x^{2}}

函数的四则运算的求导法则

  设u=u(x)v=v(x)都可导,则

表达式 导数
u \pm v u^{\prime} \pm v^{\prime}
C u C u^{\prime}
u v u^{\prime} v+v^{\prime} u
\displaystyle\frac{u}{v} \displaystyle\frac{u^{\prime} v-v^{\prime} u}{v^{2}}

复合函数求导法则

  设y=f(u),而u=\varphi(x),则y的导数为
\displaystyle\frac{d y}{d x}=\displaystyle\frac{d y}{d u} \cdot \displaystyle\frac{d u}{d x}\displaystyle y^{\prime}=f^{\prime}(u) \cdot \varphi^{\prime}(x)

参考

https://wenku.baidu.com/view/a57424092bf90242a8956bec0975f46527d3a7ce.html